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bB1rz-d. Applyiig the -ethad at f:::nc:lax ::ac&c:Ealicz, ai z-di-cnsiona! non!ix:a: 
Schrsdinger equation is changed into a sine-Gordon equation which depends only on one 
fundion (. The general solution of the equations of 5 leads to a general soliton solution 
of NL?. It contains some interesting specific solutions, such as the N multiple solitons, 
the propagational breathers and the quadric solitons. Their properties are simply discussed. 

The nonlinear Schrodinger equation NLS is an important equation in physics. For the 
one-dimensional case, many results on the equation have been given in a number of 
articles [I-31. Published works are fewer for the multidimensional NLS, because they 
contain some difficult problems. Although it is known that the multidimensional 
solutions of NLS are unstable [4,5], solution to the n-dimensional NLS is still of interest 
[6,7]. In particular, these n-dimensional solutions contain some stable plane soliton 
solutions. 

r,."ri,4nr "" ..-Ai--.."i,."*l ...- 
L",,D."C, Oil. I ,  "I.ll.,llUI"IIOiI ,_.La 

ia,$+a,a,$ = a$2$*- b$ 0) 
where a, = a/axo = dJat, a, =ala&, a, b = constants, $* denotes the complex conjugate 
function of $, Here, and throughout, we use the summation convention: a greek index 
runs from 0 to n - 1 and any other index runs from 1 to n - 1, unless it is particularly 
stated otherwise. We come to find the solutions of ( 1 )  in the form 

$ = u(x) c, = c: =constant u(x) = .*(X). ( 2 )  

ia,u + i~c ,a ,u  +d,a,u = a d -  cu c = ~ - c ~ - c , c , .  (3) 

By inserting (2) into (l), one obtains 

Let us make a function transformation 

We then have 

r 
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Given (9, (3) becomes 

(6) 
Q 
2 

~ J o Q + i ~ c ; d j ~ + d ~ J i ( D - f ~ g ~ J ; ~ J ~ ~ ~ - C s i n  Q. 

Setting Q = ~ ( 5 )  which is a function of another function 6 only, we easily see that 

Substituting (7) into (6) yields 

( i J ,~+ i2c , J ,~+J ; J j~ ) -+  dQ J ; ( J ; t  [$ ---tg - ; ( : : )2 ]  - = - c s i n ~ .  (8) 
d5  

Explicitly, some solutions of (8) obey the following system of equations: 

iJ,t+ i2cjJ,t = J,J,[ = 0 JigJjt = 1 

Equation (10) is equivalent to a sine-Gordon equation, its solution is a well known 
soliton 

Q = 4  tg-' e x p ( 6  t+ to)- Tr to = constant (11) 

Applying (11) and ( 4 )  to (2), we obtain the soliton solution of NLS equation (1) in the 
form 

+ = -& cosL2 tg-1 e x p ( 6  t+ go)] exp(ic,x,) (12) 

where 5 denotes a solution of (9). Because (9) has many different solutions, (12) 
includes many interesting solitons of NLS. 

Now we come to find a kind of general solution of (9) in the form 

t = F(&) + dmx- lj = b,,x,, + d,, bjm, cj=constant (13) 

where F(5,) denotes an arbitrary function of 6. Combining (9) and (13) we easily obtain 

J F  
iJ,f + 2ic;Jjf = (i b,, + 2ic<bj,) -+ do + 2icidj = 0 JG 

JF JF J F  
J, tJ&= bjjbk;- --+2dibji-+d,d; = 1 JG J l k  JG 

aZF 
a i d i t  = bj;bki - = 0. 

(14) 

F ( l j )  to be arbitrary leads to the conditions 

bjo+2cjbji = O  do+2ic;d, = O  d.b.. , I' = 0 bjibki = 0 d ,d j=l .  (15) 
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If we take for j =  1, 2,. . . , N, then (15) implies (2+(N/2) ) (1+N)  equations 
with [ ( N +  l ) . ( n  - l ) + n ]  constants ci. d,, bji f o r i  = I ,  2 , .  . . , n-1 ,  LI =0,1,. . . , n -1 ,  
j = 1,  2 , .  . . , N. Therefore we require that N satisfies the inequality 

( 2 + ~ ) ( 1 + N ) s ( N + l ) . ( n - l ) + n .  (16) 

(16) and (13)  show that there are three cases: 
(1) n s 2, N = 0, 6 = d,x, denotes a plane solution; 
(2) n = 3, N S 2, 6 is a general solution with N S 2 variables; 
(3) n = 4, N S 3, 6 is a general solution with N s 3 variables. 
The general solution (13) makes (12) and (11) a form of general soliton solution 

of NLS and a~ equations. They contain some interesting specific solutions, such as the 
plane solitons, the N multiple solitons, the propagational breathers and the quadric 
solitons. We will discuss them respectively as the following. 

( a )  The plane solitons. This is a simple case. By taking all of bji in (15) to be equal 
to zero, F ( l j )  becomes a constant so that 

6 = d,x. +constant. 

In this case, (12) denotes a hyperplane soliton solution of NLS. This solution is stable, 
since the 6 is equivalent to a variable on one-dimensional space [4]. 

( b )  The N mulfiple solifon solufions. Let us select the function F ( & )  in the form 
N 

F(&)= ln  1 e'! 
j = ,  

where N denotes an arbitrary integral number satisfying (16). Application of (13) and 
(17) leads to 

N 

=In 1 exp[(d,+b,,)x,+~,]. (18) ,=, .. 
+. 

Setting a,, = d, + b,., the conditions (15) are simplified to 

a,,+2cca,, =o a,,ax4 = 1. (19) 

By direct calculation, we can easily prove that (18) is a solution of (9). Taking N equal 
to 1,  2 , .  . . , N respectively, (18) gives N multiple wave solutions and (12) becomes 
N multiple soliton solutions of NLS (1). They have some well known properties which 
are similar to those of some solutions of wave equations [8-10]. 

( c )  The propagational breathers. Considering N = 2 in (18), we obtain 

6 = In(e'l""+'l+e"2.Z+'2) (20) 

which corresponds to a 2-soliton of NLS. For the four-dimensional case, we set 

xo= f x , = x  x2=y X ) = Z  

RIO= -a20 a11 = - 0 2 ,  a12= 0 2 2  a11 = a23 (21) 

E,=lnA = In A+i?r 
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then (20) becomes 

In[A ea,~Y+ll,,l(eu,~'+l,,~ -e-50'-%1x )I 

=In[A e4i2y+"iJr sinh(a,or+a,,x)] (22) 
and (19) gives the conditions 

a i , + a : 2 + a : 3 =  1 a,,+2cla, ,  = O  c,a,,fc,a,,=O. (23) 
If alar a,, and A are some imaginary numbers such that 

a , ,=iao a,, =ia ,  A=-it3 (24) 

then from (22) we have 

e=ln[B sin(a,t+a,x)]. ( 2 5 )  

Inserting ( 2 5 )  into (12) or (11) yields a multidimensional breather which propagates 
in the x direction and has same value on the right line a, ,y+a, ,z  =constant. This is 
an interesting result. 

(d )  7'he quadric solitons. We know that any concrete soliton is a four-dimensional 
soliton with space shape. Its shape should he one of curved surfaces. We will show 
that the general solution (12) and (11) contain some quadric soliton solutions of NLS 

and SG.  

In order to achieve the goal, we take the solution (13) in the form 

= c,Jj + d,x, = bjmbjox,,xp + (2Ejbjm + d..)x, + EjEj j = l , 2  , ___ ,  N. (26) 
For the four-dimensional case, (26) implies 

5 = bjl bj1x2+ bj2bj2y2+ bj,bj3z2+ 2bj,  bj2xy + 2bj,bj3yz + 2bj,bj3xz 

+ (ZEjbj, + 2 bjobj, t + d,)x + (2Ejbj2 + 2bjobj2t + d,)y  + (2Ejbj, + bjobj, t + d,)z 

+ bj,bj,t2+ (2Ejbj,+ do)[ + E , E ~  j = 1 , 2  , ___ ,  N. (27)  

It describes some general quadratic surfaces at any definite time. These quadrics include 
all of specific ones such as: 

(i) n e  sphere. By choosing the constants of (27) as 
Y 

bjibjk = Sik  j =  1 , 2 , .  . . , N (28)  

we obtain a sphere with radius 

which satisfies R'> 0, and with centre 

G(-ZEjbjl -2bjobj,t - d , ,  -2Ejbj2-2blobj2i -d2, -2Ejbj3 -2bjobj,f - d,) (30) 

which moves along a space line. Thus (27) ,  (11) and (12) give some sphere solitons 
of NLS and sc. 

(ii) The ellipsoid. Under the conditions 

bjl bjl > 0 bj,bj,>O bj3bj, > 0 

b..b. 18 J k  = O  i f  k, j =  I , . .  . , N 

(27)  become ellipsoids and (11). (12) the ellipsoid solitons. 
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(iii) 7 h e  hyperboloid. Let the constants satisfy 

bj,b,,>O bj2bj, > 0 b,, b,, < 0 

bjibjk = 0 i #  k j = 1,. . . , N. 

From (27) we obtain some hyperboloids and ( l l ) ,  (12) give the corresponding hyper- 
boloid solitons of NLS and SO. 

(e) The N multiple quadric solitons and the quadric breathers. Further we select a 
specific solution as 

N 

j = l  
5 =In  I: exp lj+ d.x, 

N 
=In exp[(bjox,+E,)2+dmx~]. 

j=,  

According to the discussions on (18), (25) and (26), it is clear that inserting (33) into 
(12) and ( l l ) ,  respectively, will give the N multiple quadric solitons and the quadric 

the quadric breather behaves like a 'breathing abdomen'. 
Lastly, we assert that (11) .  (12) and (13) can lead to many other new soliton 

solutions of NLS and SC. They will be quite complicated and interesting. All of these 
soliton and breather solutions can describe various important physical phenomena. 

breathers nf NLS and e. Their preperties are ebv;.e!2s and interesting. Fnr ex2.l?p!e, 
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