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Ausiali. AppLyilg
Schrodinger equation is changed into a sine-Gordon equation which depends only on one
function £ The general solution of the equations of £ leads to a general soliton solution
of NLS. It contains some interesting specific solutions, such as the N multiple salitons,
the propagational breathers and the quadric solitons. Their properties are simply discussed.

+y = trancia i i
the method of functions transformation, an n-dime

The nonlinear Schrodinger equation NLs is an important equation in physics. For the
one-dimensional case, many results on the equation have been given in a number of
articles [1-3]. Published works are fewer for the multidimensional NLS, because they
contain some difficult problems. Although it is known that the multidimensional
solutions of NLs are unstable [4, 5], solution to the n-dimensional NLs is still of interest
[6,7]. In particular, these n-dimensional solutions contain some stable plane soliton
solutions.

Consider an n-dimensional NLs
- — 2 *
B + 304 = ayr ot — by (1)

where 8,=d/9x,=8/8t, 3; =3/3x;, a, b=constants, ¢* denotes the complex conjugate
function of . Here, and throughout, we use the summation convention: a greek index
runs from 0 to n—1 and any other index runs from 1 te n—1, unless it is particularly
stated otherwise. We come to find the solutions of (1} in the form

g = u(x) e'%"= c, = c* = constant u(x) = u*(x). (2}
By inserting (2) into (1), one obtains
i8ou +i2¢;0,u+3,9.u = au’ —cu c=b—rcy—cc. (3)

Let us make a function transformation

[c. o

= sim . {4)
Va™"2
We then have
1 c
idou-+i2cau= 5 \/: cos 523 (3o +2ci9:¢)
3,0 =l 1 /Ecosf/aaqc-—ltgf&iwa,:p\ (5}
CETAa N 2N 27F2 /
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Given (5), (3) becomes
g +i2¢:00 +0,0.:0 —3 18 522 dpdup = —c sin ¢. {6)

Setting ¢ = (£) which is a function of another function £ only, we easily see that

dap = aaE“—'

d¢
2
Bipd @ = a.fa.f( r g) (7
3,3, a§a§d2‘°+a ag—
= § f .

Substituting (7) into (6) yields

(1de€ +i2¢i0:6 +3:0:6) = +a§a§[d‘° %tg (d¢)]=—csin¢. (8)

dg d¢
Explicitly, some sclutions of (8) obey the foliowing system of equations:
i8of +i2c0,£ =904 =0 =1 (9)
_ e de_ c.
=+2¢ cos 5 e 5 sine. (10)

Equation (10) is equivalent to a sine-Gordon equation, its solution is a weli known
soliton

p=4tg" exp(V2c E+ &) -7 £, = constant (11}
Appiying (11) and (4) to (2}, we obtain the soliton solution of ~Ls equation (1) in the

form

Y= —\/é cos[2 tg ' exp(v2¢ £+ &)] explic.x,) (12)

where £ denotes 2 solution of (9). Because (9) has many different solutions, (12)
includes many interesting solitons of NLs.
Now we come to find a kind of general solution of (9) in the form

£=F(§)+dx, = b.x,tg d,, bjs, & = constant (13)

where F({;} denotes an arbitrary function of ;. Combining (9) and (13) we casily obtain
i8¢ + 2ic;0,6 = (ibjo + 2ic bJ,) + dy+2ied, =0

aF aF

§ g ki { ck _J é:,
§’F
6‘,-6,- = b i “‘_“0.
& LTy

F({;) to be arbitrary leads to the conditions
by +2¢h; =0 dot2icd =0 db;

H

=0 bj,‘bk,- =0 d,-dj =1. (15)
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If we take F({;) for j=1, 2,..., N, then (15) implies (2+{N/2)){(1+ N) equations
with [(N+1)-(n—1)+n] constants ¢;, d,, b, fori=1,2,...,n—1,a=0,1,...,n—1,
j=1,2,..., N. Therefore we require that N satisfies the inequality

(2+—];-)(1+N)-<.(N+1)-(n—1)+n. (16)

(16) and (13) show that there are three cases:

(1) n<2, N=0, £=d_.x, denotes a plane solution;

(2) n=3, N=<2 {is a general solution with N <2 variables;

(3) n=4, N=<3, { is a general solution with N =<3 variables.

The general solution {(13) makes (12} and (11) a form of general soliton solution
of nLs and sG equations. They contain some interesting specific solutions, such as the
plane solitons, the N multiple solitons, the propagational breathers and the quadric
solitons. We will discuss them respectively as the following.

(a) The plane solitons. This is a simple case. By taking all of b; in (15) to be equal
to zero, F({;} becomes a constant so that

£ =d,x, + constant.

. In this case, (12) denotes a hyperplane soliton solution of wis. This solution is stable,
since the £ is equivalent to a variable on one-dimensional space [4].

(b) The N multiple soliton solutions. Let us select the function F({;) in the form
N
F(f)=In ¥ &% (17)
j=1

where N denotes an arbitrary integral number satisfying (16). Application of (13} and
(17) leads to

E=F({)+dx, = ln(c"a‘a E c‘;)

N
=In ¥ exp[{d,+ by )x. +¢] (18)
j=1
Setting a;, = d, + b, the conditions (15) are simplified to
ajo+ 2C,‘aﬁ =0 aﬁak,- =1. (19)

By direct calculation, we can easily prove that (18) is a solution of (3). Taking N equal
to 1, 2,..., N respectively, (18) gives N multiple wave solutions and {12) becomes
N multiple soliton solutions of NLs (1). They have some well known properties which
are similar to those of some solutions of wave equations [8-10].

(¢) The propagational breathers. Considering N =2 in (18), we obtain
£ = In(ePmet™ 4 g™ ) (20)
which corresponds to a 2-soliton of NLs. For the four-dimensional case, we set
Xg=1t X=X X;=y X;=12z
a4y =" a, =—ay 012= 8y a;=ax (21)

g, =InA e,=InA+inr
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then (20) becomes

£=In[ A g™+ Bt (g i an _ o= i—am)]

=In[ A e"2" "% ginh(a,of + @1,x)] (22)

and (19} gives the conditions

al,+al,tal;=1 aiot+2c,a,=0 22+ 38,3 =0. (23)
If a,4, a;; and A are some imaginary numbers such that

a,p=ia, a,, =ia, A=-iB (24)
then from (22) we have

£=In[ B e®?*" 3% sin(ayt + a,x)]. (25)

Inserting (25) into (12) or (11) yie]ldé. a multidimensional breather which propagates
in the x direction and has same value on the right line a,,y + a3z = constant. This is
an interesting result.

(d) The quadric sofitons. We know that any concrete soliton is a four-dimensional
soliton with space shape. Its shape should be one of curved surfaces. We will show
that the general solution (12) and (11) contain some quadric soliton solutions of NLs
and sG.

In order to achieve the goal, we take the solution (13) in the form
E=li+ dx, = bubpx.xs + (26bj, +d,)x, + g5 j=1,2,..., N (26)
For the four-dimensional case, (26} implies

g = b;] bj1x2+ bjzbjzyz + bj]bj322+ 2bj|b}2xy + ijz )3 ¥Z +2b, b‘:;xz

i i}
+(2g;b; +2biobyit +d)x+ (2gb+2b,pbiat + do)y + (2eb,5+ bigbist +ds) z
+b_’0bJ0t2+(28JbJo+ do)t+£JEJ j=1,2,..., N. (27)

It describes some general quadratic surfaces at any definite time. These quadrics include
all of specific ones such as:
(i) The sphere. By choosing the constants of (27) as

bjibjk=8ik j=12,...,N (28)

we obtain a sphere with radius
d; d; 172
R= [(Ejbji -+ bjObjl it +—21)(£kbki + bkob;“-t +El) - bjobjotz - (2€jbjg+ do) | Ejsj] (29)

which satisfies R?> 0, and with centre
G("ZEjbj] _2bj0bjlf - d] N "'ZEij-z - 2bj0 jgl - dz, —2Ejbj3 _ijgbj;;t - d;) (30)

which moves along a space line. Thus (27), (11) and (12} give some sphere solitons
of NLs and sG. '
{(ii) The ellipsoid. Under the conditions

il
biby =0 ik, j=1,...,N (31)

i

(27) become ellipsoids and (11}, (12) the ellipsoid solitons.
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(iii) The hyperboloid. Let the constants satisfy

byb; >0 b,bi;>0 b;3b;; <0
biby =0 i*k j=1,...,N. (32)

From (27) we obtain some hyperboloids and {11), (12) give the corresponding hyper-
boloid solitons of NLs and sG.

{e) The N multiple quadric solitons and the quadric breathers. Further we select a
specific solution as

N
E=In ¥ exp{i+d.x,
Jj=1

=ln[edwx- g p(bx. + &) ] (33)

N
=In ¥, expl{b.x,+ sj)2+ d.x,]

j=1

According to the discussions on (18), (25) and (26), it is clear that iriserting (33) into
(12} and (11), respectively, will give the N multiple quadric solitons and the quadric

hreathers of nN1g and oz, Their nronerties are ohviong and interestine, For examnle

e e LNEASLF SARALE ONJs A RAWER QAR WERILAY AW WASTAL LS LIS LML wORRIIEgs WARERARpraANy
the quadric breather behaves like a *breathing abdomen’.

Lastly, we assert that (11), (12) and (13) can lead to many other new soliton
solutions of Nis and sG. They will be quite complicated and interesting. All of these
soliton and breather solutions can describe various important physical phenomena.
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